Minimaxity in predictive density estimation with parametric constraints

نویسندگان

  • Tatsuya Kubokawa
  • Éric Marchand
  • William E. Strawderman
  • Jean-Philippe Turcotte
چکیده

This paper is concerned with estimation of a predictive density with parametric constraints under Kullback-Leibler loss. When an invariance structure is embedded in the problem, general and unified conditions for the minimaxity of the best equivariant predictive density estimator are derived. These conditions are applied to check minimaxity in various restricted parameter spaces in location and/or scale families. Further, it is shown that the generalized Bayes estimator against the uniform prior over the restricted space is minimax and dominates the best equivariant estimator in a location family when the parameter is restricted to an interval of the form [a0,∞). Similar findings are obtained for scale parameter families. Finally, the presentation is accompanied by various observations and illustrations, such as normal, exponential location, and gamma model examples. AMS 2000 subject classifications: 62C20, 62C86, 62F10, 62F15, 62F30.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predictive Density Estimation for Multiple Regression

Suppose we observe X ∼ Nm(Aβ, σI) and would like to estimate the predictive density p(y | β) of a future Y ∼ Nn(Bβ, σI). Evaluating predictive estimates p̂(y | x) by KullbackLeibler loss, we develop and evaluate Bayes procedures for this problem. We obtain general sufficient conditions for minimaxity and dominance of the “noninformative” uniform prior Bayes procedure. We extend these results to ...

متن کامل

Minimax and Adaptive Inference in Nonparametric Function Estimation

Since Stein’s 1956 seminal paper, shrinkage has played a fundamental role in both parametric and nonparametric inference. This article discusses minimaxity and adaptive minimaxity in nonparametric function estimation. Three interrelated problems, function estimation under global integrated squared error, estimation under pointwise squared error, and nonparametric confidence intervals, are consi...

متن کامل

تخمین احتمال بزرگی زمین‌لغزش‌های رخ‌داده در حوزه آبخیز پیوه‌ژن (استان خراسان رضوی)

Knowing the number, area, and frequency of landslides occurred in each area has a prominent role in the long-term evolution of area dominated by landslides and can be used for analyzing of susceptibility, hazard, and risk. In this regard, the current research is trying to consider identified landslides size probability in the Pivejan Watershed, Razavi Khorasan Province. In the first step, lands...

متن کامل

L2-density estimation under constraints

In this paper, we are interested in non parametric density estimation under constraints. It generalises a previous paper which was devoted to density estimation with non-positive kernels. The resulting density approximation improves the estimation (by reducing the bias) but provides negative values. Therefore, we have proposed a projection method on the space of probability densities and an alg...

متن کامل

تشخیص سرطان پستان با استفاده از برآورد ناپارمتری چگالی احتمال مبتنی بر روش‌‌های هسته‌ای

Introduction: Breast cancer is the most common cancer in women. An accurate and reliable system for early diagnosis of benign or malignant tumors seems necessary. We can design new methods using the results of FNA and data mining and machine learning techniques for early diagnosis of breast cancer which able to detection of breast cancer with high accuracy. Materials and Methods: In this study,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Multivariate Analysis

دوره 116  شماره 

صفحات  -

تاریخ انتشار 2013